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Abstract 

 

THE BEHAVIORAL RESPONSES OF TWO APPALACHIAN CRAYFISH TO COOL 

AND WARM SPECTRUM LED LIGHT AT NIGHT 

 

Justin Ryan Fischer 

B.S., University of North Texas 

M.S., Appalachian State University 

Co-chairpersons: Michael Gangloff and Robert Creed 

 

Ecological light pollution is increasing worldwide, and the use of artificial lighting is 

expected to increase during the coming decades. The threats posed by light pollution to 

freshwater ecosystems are not well-studied. Light-emitting diodes (LEDs) are currently the 

preferred luminaire technology and have largely replaced incandescent, fluorescent and high-

intensity discharge lights across much of the developed world. Two different types of LEDs 

are in widespread use. Cool-spectrum LEDs are characterized by shorter wavelength cool-

hued light whereas warm-spectrum LEDs are characterized by longer wavelength, warm-

hued lights. It is not clear how the different spectral emissions produced by these two LED 

categories will affect freshwater animals. The New River crayfish (Cambarus 

chasmodactylus) and the spiny stream crayfish (Orconectes cristavarius) are important 

ecosystem engineers with influences on food webs, community structure and nutrient 

processing. I used artificial stream microcosms to expose both species to cool (5000 K) and 

warm (3000 K) spectrum lights at intensities of 15 lux. I recorded crayfish behaviors under 

each light treatment and in a dark control during the first and third hours after artificial dusk. 

In addition, I quantified total substrate displacement for C. chasmodactylus in these 
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treatments. I found that O. cristavarius sheltering behavior significantly increased and 

locomotor activity decreased while exposed to both 5000 K and 3000 K light. Cambarus 

chasmodactylus significantly increased sheltering behavior and exhibited decreased mobility 

in response to 5000 K but not 3000 K lights. Substrate displacement by C. chasmodactylus 

was not affected by light treatments. Reduced crayfish mobility may lead to fewer foraging 

opportunities and reduced bioturbation in light-polluted streams. Species-specific responses 

to artificial light complicate our ability to make generalizations about the effects of LEDs on 

freshwater ecosystems. Further investigations are needed to understand how the effects of 

LEDs differ among freshwater taxa as well as how long-term exposure to cool and warm 

LED spectral emissions may alter the behaviors of freshwater taxa and key ecosystem 

processes.  
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INTRODUCTION 

Anthropogenic light sources have illuminated the night on a large scale since the beginning 

of the Industrial Revolution (Longcore and Rich 2004). Nighttime illumination is now 

increasing at an annual rate of 6% worldwide (Hölker et al. 2010). Through increased 

urbanization and technological advances, the quantity of lights is increasing and spectral 

qualities of light installations are diversifying. Direct glare from individual lights and sky 

glow from atmospheric refraction may influence the behavior of nocturnal and crepuscular 

organisms (Gaston et al. 2014). This artificial illumination is referred to as ecological light 

pollution (ELP). While there has been an awareness of the potentially negative impacts of 

ELP (e.g., disorientation of turtle hatchlings) for a few decades, it is only recently that there 

has been a concerted effort to understand its effects on organism behavior and ecosystem 

processes (Longcore and Rich 2004). 

 Organisms perceive a range of electromagnetic wavelengths depending on optical 

physiology. While human vision is in the 400-700 nm range, many species detect 300 nm 

ultraviolet (UV) light, and various taxa use linearly polarized light for navigation (reviewed 

in Horváth et al. 2009). Wavelength perception deserves attention due to the plethora of 

lighting technologies that emit both broad and narrow-spectrum light. Further, changes in 

lighting technology can drastically alter which organisms are affected (Davies et al. 2013, 

Pawson and Bader 2014). Light-emitting diodes (LEDs) are becoming the preferred light 

source in both urban and rural areas. Although LEDs reduce energy consumption and provide 

more light per watt, their broad spectrum characteristics suggest that they could affect an 

array of nocturnal and crepuscular behaviors. Efforts are being made to create more 

biologically appealing LED models, with wavelengths emissions that are less detrimental to 
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various species in a variety of ecosystems (Longcore et al. 2015, Spoelstra et al. 2015, 

Žukauskas et al. 2014).  

It is estimated that ~30% of vertebrates and >60% of invertebrates are nocturnal 

which means that ~1-5 million species may be impacted by altered light regimes globally 

(Hölker et al. 2010). To date, much of what we know about the effects of artificial light at 

night (ALAN) on nocturnal taxa has been elucidated from studies of just a few vertebrate 

taxa. Briefly, ALAN has been shown to affect orientation (Squires and Hanson 1918, 

Witherington and Bjorndal 1991), physiology (Navara and Nelson 2007, Fonken and Nelson 

2014) and behavior (Miller 2006, Robertson et al. 2010, Kurvers and Hölker 2015) of 

vertebrate taxa. The effects of ALAN on invertebrates have not been extensively studied but 

entomologists have exploited the fixating capabilities of a range of artificial light sources for 

as long as they have existed (Williams 1939). Moore et al. (2001) found that ALAN alters 

Daphnia vertical migration. Nocturnal insects fixate upon, become disoriented by and are 

rapidly drawn to a range of ALAN sources (Frank 1988, Eisenbeis and Hassel 2000, 

Eisenbeis 2006). Research has shown that firefly (Coleoptera: Lampyridae) communication 

is hampered by ALAN (Lloyd 1994). Large lights in terrestrial habitats can change local 

invertebrate community composition over time (Davies et al. 2012) and Geffen et al. (2015) 

found that long-term exposure to ALAN may inhibit Geometrid moth reproductive hormone 

production. Effects of ALAN on aquatic invertebrate communities and freshwater 

ecosystems have not been well-documented (Gaston et al. 2015). It is crucial that researchers 

work to separate the effects of other stressors from ELP effects in order to understand the 

consequences of increased nocturnal illumination.  
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We know comparatively little about the effects of ALAN on freshwater ecosystems 

and processes (Moore et al. 2001, Longcore and Rich 2004, Perkin et al. 2011). The seminal 

book Ecological Consequence of Artificial Night Lighting by Rich and Longcore (2006) 

contained a contribution by Moore et al. (2006) that was the first to predict that ALAN is 

likely to disrupt freshwater systems. Streams and their associated riparian zones are hotspots 

for biodiversity and sites of high productivity at the local and landscape scales. Streams and 

stream biota provide important ecosystem services including nutrient sequestration and 

processing, water purification and flood control. Although freshwaters cover a mere 0.8% of 

the planet, 9.5% of all animal species reside in these habitats (Balian et al. 2008). Perkin et 

al. (2011) outlined four research domains that emphasize the threats of ALAN to stream 

ecosystems: 1) effects on dispersal, 2) population genetics, 3) ecosystem functioning, and 4) 

interactions with other stressors. These domains have been the focus of subsequent studies 

that have not only provided some answers, but also introduced new questions.  

 Early studies investigating the role of light in aquatic invertebrate life histories 

assessed the effects of natural light regimes and predators on the foraging behaviors of 

mayflies (Wodsedalek 1911, Lyman 1945, Kohler and McPeek 1989, Scrimgeour and Culp 

1994). During the daylight hours, many mayfly species remain on the underside of substrates, 

where they are safe from visually-feeding, vertebrate predators. As night approaches, these 

individuals typically move to the upper surface where periphyton growth is more abundant 

(Peckarsky 1996, Schloss 2002, but see Kohler 1983). Elliot (1968) and Waters (1972) 

investigated how mayfly adaptive compromises are influenced by natural photoperiod 

regimes. Relative light change (RLC) has been determined to be the key mechanism behind 
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the shift from diurnal foraging behavior to nocturnal foraging for the mayfly nymphs of 

Stenonema modestum (Schloss and Haney 2006).  

Under naturally occurring photoperiods, aquatic insect richness, abundance and 

community structure remained unchanged (Guareschi et al. 2016). However, mounting 

evidence suggests that the introduction of artificial light sources disrupts activity periods, 

orientation and distributions of several stream taxa. For example, adult aquatic insects fixate 

on glare light sources (Nowinszky et al. 2012). Meyer and Sullivan (2013) studied aquatic 

insect emergence and riparian spider densities in illumination treatments of 0.1-12.0 lux, and 

found a decrease in spider density and emergent aquatic insect family richness with light. 

Henn et al. (2014) found that in high-clarity central Texas streams, aquatic insect drift 

abundance decreased by 37% under high light pollution. Interestingly, they did not find a 

difference in insect richness or diversity. However, Andersson (2015) did find a significant 

decrease in species richness in the drift proximate to ALAN. Emergent aquatic insects are 

drawn farther into the terrestrial environment in the presence of riparian light (Perkin et al. 

2014a), possibly affecting aquatic-riparian nutrient transfer. Freshwater amphipods 

(Gammarus) have been studied due to their widespread distribution, with surprising results. 

Gammarid drift rates did not change once experimental enclosures were exposed to a range 

of illuminations, except when individuals were isolated in smaller enclosures (Perkin et al. 

2014b). It has become apparent that the effects of ALAN on stream dispersal are variable and 

likely species-specific. Any change in drifting abundance and/or richness could have a 

detectable impact on community structure, population connectivity and resources for 

insectivorous fish. 
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 Crayfish can influence the distributions and abundances of other macrovinvertebrates, 

macrophytes, detritus, algae and sediment (Creed 1994, Creed and Reed 2004, Lodge et al. 

1994). Despite extensive studies of the ecological roles and life histories of several crayfish, 

there are still gaps in our knowledge of ecological interactions and conservation threats 

(Helms et al. 2013). ALAN studies may contribute to our understanding of how crayfish 

function in ELP-altered environments. Further, they may contribute to our understanding of 

crayfish invasions if invasive species are more tolerant of ELP. Crayfish activity periods can 

be measured as a proxy for understanding how ALAN might affect a number of things, such 

as inter- and intraspecific contact, ecosystem engineering, and foraging behaviors. Thomas et 

al. (2016) found that under high-pressure sodium light of 12 ± 5 lux, naturalized populations 

of the invasive signal crayfish (Pascifastacus leniusculus) showed reduced activity, increased 

sheltering, and reduced interactions with conspecifics. Theirs was the first study to 

investigate how light pollution might affect crayfish, as well as the first look at how an 

invasive species responds to ALAN.  

Abeel et al. (2016) investigated the effects of cool (5500 K), neutral (3800 K) and 

warm (2600 K) LED light on the stress responses of the noble crayfish (Astacus astacus) in a 

closed system designed to simulate the conditions of crustacean aquaculture for the 

production of seafood. They applied what they considered to be bright (761 lux) and weak 

(38 lux) intensities. Both of these intensities are far higher than would be experienced by 

wild crayfish, yet they are common in aquaculture. They found indications of stress in 

response to brighter light, but not to different light colors. Crayfish are known to perceive 

polarized light, as do many other freshwater invertebrates (Muller 1973). It is probable that 

crayfish utilize polarized light as well as natural lighting for orientation during both diurnal 
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and nocturnal movements. The effects of ALAN on crayfish may be species- or even 

population-specific due to the range of water depths, turbidities, riparian covers, and land 

uses that comprise each habitat.  

For this study, two regionally common crayfish species were selected for trials. The 

New River crayfish (Cambarus chasmodactylus) and spiny stream crayfish (Orconectes 

cristavarius) are both common in the headwaters of the New River in Watauga and Ashe 

counties, North Carolina, USA (Helms and Creed 2005, Fortino and Creed 2007). Cambarus 

chasmodactylus is endemic to the New-Kanawha River Drainage and occurs in low-to mid 

order streams with large rock slabs (Loughman et al. 2013). Although both C. 

chasmodactylus and O. cristavarius may occur syntopically, O. cristavarius is also abundant 

in gravel-bottomed pools and runs. Orconectes cristavarius is native to the New River, but 

also occurs in other Ohio River tributaries including the Big Sandy and Kentucky rivers 

(Taylor and Schuster 2005). Locally, O. cristavarius may be undergoing a range expansion 

as it has moved into and become abundant in tributaries of the South Fork of the New River 

(Fortino and Creed 2007, RP Creed pers. comm.).   

 The objectives of this study were to 1) determine if these two crayfish species show 

changes in nocturnal activity under ecologically relevant ALAN levels, and 2) discern 

whether these two species exhibit any differences in the responses to warm spectrum (3000 

K) and cool spectrum (5000 K) LED lights. Comparing the responses of these two species 

will provide novel insights into how two co-occurring genera of crayfish are affected by 

artificial light. Comparing two types of LED light on crayfish behavior could also provide 

valuable information on which type of LED might have less of an impact on aquatic species. 
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The following hypotheses were made concerning the responses of both species to 

ALAN: 1) cool LED lights should cause a more pronounced change in crayfish behavior, and 

2) the habitat specialist C. chasmodactylus would be more affected by nocturnal illumination, 

while the habitat generalist O. cristavarius would be less affected.  

 

METHODS 

LED Lights 

All light technologies are marketed with a calculated CCT to indicate the color of the light, 

irrespective of lighting technology. The CCT correlates to the spectral characteristics of the 

light emissions. Lights with a CCT between 2000-3500 K are generally described as ‘warm’ 

colored, appearing more yellow-orange. Lights within 4500-6500 K are described as ‘cool’ 

colored, and appear bluer. Neutral white colors are between these two classifications. 

Warmer lights emit more light in the 600 – 700 nm range, and cooler lights are stronger in 

the 400-500 nm range. While these designations describe the light that humans perceive, 

different technologies emit different wavelengths to achieve these CCTs, which underscores 

the importance of considering the impacts of each type of LED light on biota. The concurrent 

prevalence of these two categories of LED lights in urban and suburban areas warrants the 

study of how they may impact stream species. 

 Recent studies have begun to delineate what is considered ‘ecologically relevant’ 

ALAN (Thomas et al. 2016). Some have used unrealistically intense experimental treatments 

that are unlikely to be found in nature (Abeel et al. 2016), providing data that are irrelevant to 

ecologists. By designating ecologically relevant light pollution levels to be 1-20 lux, these 

studies made their findings more meaningful and applicable to the considerations of future 

urban planners.  
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Experimental design 

The laboratory setup consisted of five 38 l aquaria for acclimation, and three 38 l 

aquaria for experimental trials. Acclimation aquaria were on separate but adjacent shelves. 

All aquaria contained a uniform gravel substrate to a depth of 5 cm. Each aquarium contained 

a shelter created by placing two three-holed red clay bricks side-by-side to create three 

tunnels 10 cm long with a diameter of 4.5 cm (Figure 1). A 2000 l h-1 wave-maker pump 

(SunSun Model: JVP-110) was placed in the corner above each shelter to create a stream-like 

current and maintain dissolved oxygen saturation. Aquaria were covered by metal hardware 

cloth in order to prevent crayfish from escaping. All doors, and windows were blacked-out to 

prevent light penetration. The entire setup was kept in a 16˚C climate-controlled room. Each 

acclimation and experimental aquarium had a weekly 50% water replacement with water 

collected from the South Fork of the New River. 

Equiline LED 12V puck lights (Tresco, model L-POC-3EQFR-CNI-1; model L-POC-

3EQFR-WNI-1) were placed 1.25 m above each tank. Two CCTs were used, 5000 K (cool 

white) and 3000 K (warm white). Lights were covered with a layered black plastic mesh in 

order to dim the intensity to the desired level without changing the spectral emissions. This 

setup produced ecologically relevant light pollution of 15 ± 1 lux at the water surface. This 

intensity was chosen as a result of field observations of riparian light pollution near the 

Appalachian State University (ASU) campus in Boone, NC. Hodges Creek at Boone Creek 

Drive had water-level light intensities of 22.5 lux. Boone Creek at Rankin Science Hall on 

the ASU campus had a stream-level light intensity of 6.6 lux. All light measurements were 

taken using a lux meter (Extech Instruments, model LT300).   
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Crayfish collection and acclimation 

Light-naïve Cambarus chasmodactylus and O. cristavarius were collected from several 

stream reaches in the New River watershed in Watauga and Ashe counties, North Carolina, 

USA. No light pollution was present at the collection locations. Crayfish were caught by 

active collection with D-frame nets, seines and rock-turning by hand. Collected crayfish were 

immediately brought to the laboratory acclimation aquaria. Total carapace length (TCL) was 

measured, and sex was determined (Table 1, 2). Male gonopods were examined to determine 

whether the individual was in the form I or form II reproductive state. Two crayfish were 

acclimated in each aquarium, each with its own brick shelter. Individuals readily used these 

shelters, and minimal conflict was observed. Each animal was fed two pellets of TetraFin fish 

food every other day during acclimation. No food was given to individuals within 24 hours of 

their use in trials, nor during trials. Crayfish were returned to their respective collection sites 

after the completion of trials. Each animal was used in one trial. Measurements of each 

crayfish (C. chasmodactylus TCL 2.9-4.4 cm; O. cristavarius TCL 1.3-2.3 cm) did not 

indicate repeated use of any individuals.  

For acclimation and trial aquaria, daytime illumination was created using full-

spectrum fluorescent tube lights (Sylvania Model: F40DSGN50) at a water-surface intensity 

of 2100-3900 lux, depending on the measurement location in relation to the lights. This 

intensity is similar to natural illumination on a cloudy day, or under a partially shaded 

riparian canopy. Daytime lights were on from 0700-2000 hrs. Trials were conducted from 

April to June 2016. 

Infrared night vision home security cameras (Netgear Arlo Q model: VMC3040) 

were used to record the nocturnal behaviors of crayfish during trials. Cameras were placed 
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facing into the front side of the aquarium with a view of the entire habitat. Supplemental 

infrared illumination was located above each aquarium in order to ensure adequate visibility 

during night vision mode.  

 

LED trials 

Each group of acclimated crayfish provided individuals for three consecutive nights of trials. 

Within the three trial aquaria, the location of the treatments (control darkness, 5000 K LED, 

3000 K LED) was rotated each night to reduce the risk of a location effect due to any 

unforeseen difference in microcosm conditions.  

On trial days at 1700 h, three crayfish were randomly chosen from the acclimation 

aquaria and each one was placed in a randomly selected experimental aquarium. Animals 

were allowed to acclimate to the experimental aquarium for 3 h. Crayfish acclimated to these 

aquaria rapidly due to their similarity with acclimation aquaria. At 1945 h, full spectrum 

lights were removed and cameras were placed in front of each tank. Blackout shelters 

constructed of matte black poster boards were created around, above and below each trial 

aquarium to isolate each treatment and to mimic the nocturnal environment. At 

approximately 2030 h, LED lights were turned on, and trials began. At the commencement of 

a trial period, the acclimation aquaria were completely enveloped in thick black plastic 

sheeting to avoid exposing them to experimental treatments.  

 

Data collection and analysis 

Video recordings of the first and third hours after the start of trials were analyzed. These 

hours were selected due to previously described crayfish activity periods (Page and Larimer 
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1972, Loughman et al. 2013). The total duration (seconds) and frequency per hour of 

sheltering behavior was recorded. Sheltering animals were either inside of the brick tunnels, 

between the bricks and the sides of the aquarium, or behind the bricks (e.g. Figure 2). These 

areas were considered shelter due to preliminary observations of crayfish retreating to these 

locations when threatened. Illumination was noticeably reduced in these locations.  

 Substrate disturbance was quantified for C. chasmodactylus only. A 1 cm2 grid was 

placed on the front and back of each aquarium. At the start of each trial, substrates were 

leveled at 5 cm depth. Changes in substrate topography were recorded in cm2 at 0700 h 

following each trial night. Photographs were taken of the substrate topography of each 

morning (example in Figure 3), and analyzed by counting the number of cells where 

substrate was displaced for each side of the aquarium. Preliminary observations of O. 

cristavarius did not find notable substrate disturbance. Sample size was not large enough for 

a comparison of sexes that would support drawing any conclusions, therefore these analyses 

were omitted. 

 Preliminary data analyses found that data violated the assumptions of the parametric 

one-way analysis of variance. Shapiro-Wilk tests found that normality was violated for both 

data sets. Bartlett and Levene tests found that data violated the assumption of equal 

variances. Transformations failed to correct for this. As a result, data were analyzed using a 

nonparametric Kruskal-Wallis one-way analysis of variance on ranks (Kruskal and Wallis 

1952). A sequential Bonferroni correction (Holm 1979) was included to reduce the 

probability of a type I error (α = 0.025). Post hoc Dunn’s tests (Dunn 1964) were conducted 

for multiple comparisons when significant differences were found. Substrate disturbance data 

for C. chasmodactylus were analyzed using a Kruskal-Wallis test adjusted for ties (Conover 
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and Iman, 1981). All analyses were conducted using R software (R Development Core Team, 

2016). 

 

RESULTS 

Cambarus chasmodactylus 

Observation of C. chasmodactylus behavior at 2000 h (n = 13) found that under 5000 K light, 

the total time spent sheltering significantly increased (H = 7.63, d.f. = 2, P = 0.02; Figure 4a). 

At 2000 h, the frequency of sheltering decreased significantly under both light treatments 

(Table 3; Figure 4b). At 2200 hrs (n = 12), a non-significant increase in total sheltering time 

was observed under 3000 K light (Table 3; Figure 5a). At 2200 h, no significant changes in 

sheltering frequency were observed (Table 3; Figure 5b). Substrate disturbance for C. 

chasmodactylus (n = 13) was not significantly different among the treatments (Table 3). 

 

Orconectes cristavarius 

For O. cristavarius at 2000 h (n = 11) total time sheltering increased significantly under both 

5000 K and 3000 K light compared to the control (Table 3; Figure 6a). At 2000 h, there was 

no significant increase in sheltering frequency (Table 3; Figure 6b). At 2200 h (n = 9), a non-

significant increase in sheltering occurred under 5000 K lights (Table 3; Figure 7a). At 2200 

h, there was no significant increase in sheltering frequency (Table 3; Figure 7b). 

  A paired t-test compared the total time spent sheltering at 2000 h and 2200 h. 

Individuals did not change sheltering time between 2000 h and 2200 h in either species (C. 

chasmodactylus: t(35) = 0.581, P = 0.57; O. cristavarius: t(20) = 1.189, P = 0.25). A linear 

regression of total sheltering in relation to TCL was performed with combined data from both 
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hours and for both species (Figure 8), and while one relationship was significant the r2 values 

suggested that body size was not a significant source of variation in the responses of either 

species (control: R2 = 0.008, n = 45, P = 0.55; cool LED: R2 = 0.14, n = 45, P = 0.01; warm 

LED: R2 = 0.065, n = 45, P = 0.09).   

 

DISCUSSION 

My data suggest that ecologically relevant levels of LED light at night alter the behavior of 

two crayfish species. Both cool and warm-colored LEDs significantly increased the amount 

of time spent sheltering, and reduced nocturnal mobility of Orconectes cristavarius and 

Cambarus chasmodactylus. Orconectes cristavarius was slightly more responsive than 

Cambarus chasmodactylus to light intensities of 15 lux. The effects of LED light at night on 

the focal species were not related to body size. This suggests that the illuminated 

environment was the cause of changes in behavior, and not the size differences between the 

two species. Despite the effect of ALAN on activity, total nightly substrate disturbance by C. 

chasmodactylus was not different across treatments. The findings of this study highlight the 

responses to ALAN that are expected in freshwater, terrestrial and marine systems (Perkin et 

al. 2011) and suggest that the nocturnal behaviors of crayfish throughout the Appalachian 

region are likely to be altered, possibly with dramatic consequences for ecosystem processes. 

This is the first study to investigate the impacts of ALAN on native crayfish. Our 

findings concur with those of Thomas et al. (2016). In summary, this study and Thomas et al. 

(2016) have demonstrated that both native and non-native crayfish of three genera 

(Cambarus, Orconectes and Pacifastacus) respond to commonly used urban lighting 

technologies at an illumination intensity of 15 lux. This study was also the first to investigate 
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the impacts of LED lights on native crayfish. Behavioral changes of C. chasmodactylus and 

O. cristavarius under LED light corroborate the conclusions of Thomas et al. (2016), yet the 

contrasting light emissions and underlying ecology are noteworthy. Pacifastacus leniusculus 

were exposed to narrow spectrum high-pressure sodium (HPS) lights in the aforementioned 

study, whereas I exposed Cambarus and Orconectes to broad spectrum LEDs. Thus, both 

HPS and LED lights inhibit nocturnal crayfish behavior. 

Sheltering responses under ALAN are similar to responses documented when 

Pacifastacus leniusculus were exposed to chemical and visual predator stimuli (Blake and 

Hart, 1993). These observed behavioral changes also support previous works by Kennedy 

and Bruno (1961), and Fanjul-Moles et al. (1992) that show crayfish are especially sensitive 

to red light as adults, as are many freshwater and marine taxa (Lythgoe, 1988). Evolutionary 

pressures of the aquatic environment may have selected for enhanced perception of longer 

wavelength, low-energy red light since it is most quickly lost in deeper waters. It is plausible 

that O. cristavarius vision is more red-shifted than that of C. chasmodactylus, causing the 

greater response to 3000 K observed with O. cristavarius. The yabby crayfish (Cherax 

destructor) has keen eyesight and is capable of facial recognition during agonistic 

interactions with conspecifics (Van der Velden et al. 2008). Perception of long-wavelengths 

in freshwaters likely enhances vision in such intra- and interspecific communication across 

crayfish taxa. However, lower light levels were found to reduce communication efficiency 

among Orconectes rusticus, resulting in longer, less frequent agonistic behaviors (Bruski and 

Dunham 1987). The details of how crayfish species respond to unnatural illumination 

fluctuations likely depend on a combination of visual abilities, life history traits and resource 

requirements. 
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Other crustaceans are responsive to changes in light levels, although the group as a 

whole remains largely understudied. Only 11 of roughly 70,000 marine and freshwater 

crustaceans have been the focal species of ALAN research. Clearly, a lot of work is yet to be 

done. One of the first freshwater ALAN studies found that diel vertical movements of 

copepods (Daphnia) are suppressed by sky glow (Moore et al. 2001). While this study did 

not create sky glow conditions in the laboratory, determining the level of atmospheric light at 

night that may trigger a behavioral response in crayfish would advance our understanding of 

how extensive the impacts of ALAN may be. Perkin et al. (2014b) found that amphipods 

(Gammaridae) in artificial streams subjected to low fluorescent light did not alter drift rates, 

but in situ amphipods altered nocturnal activity in response to ALAN. Navarro-Barranco and 

Hughes (2015) tested the effects of both LED and halogen light on amphipod assemblages. 

They found that LED light attracted more amphipod species and individuals. Although 

amphipods and crayfish are only distantly related, the similarly strong effects of LEDs on 

both groups allude to the threat posed by broad spectrum ALAN.  

Narrow spectrum emissions of HPS and Halogen lights are likely to affect species 

with peak sensitivities within the matching range, but broad spectrum lights are capable of 

altering the visual environment of all taxa with visual capabilities (Davies et al. 2013). 

Recently, Longcore et al. (2015) showed that broad spectrum LEDs can be fine-tuned to 

reduce emissions of wavelengths that are maximally attractive to moths. With the data from 

this study and published spectral sensitivity curves, it is possible that a light model could be 

designed that minimizes effects on freshwater species while continuing to illuminate public 

use areas.  
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Changes in the behavior of crayfish could have far-reaching implications in 

freshwater ecosystems. Increased nocturnal sheltering is likely to reduce foraging 

opportunities and lead to infrequent reproductive opportunities due to the highly reclusive 

nature of the focal species under ALAN. Crayfish are highly motile ecosystem engineers in 

southern Appalachian streams (Creed and Reed 2004, Helms and Creed 2005). Locomotion 

is an important component of crayfish feeding behaviors as well as the other ecologically 

relevant behaviors of crayfish (e.g., bioturbation). When crayfish are hesitant to move about 

the nocturnal benthos, individuals may settle for sub-prime food resources that are located 

closest to shelter, rather than hunting for high quality resources.  

The impacts of ALAN on physiological processes are increasingly of interest to the 

scientific community. Bruening et al. (2015) investigated the impact of multiple illumination 

intensities on the melatonin and cortisol levels of European perch. Nocturnal release of 

melatonin was inhibited under illumination as low as 1 lux (a common level of background 

ALAN) suggesting that the circadian rhythms of freshwater fish may be already disrupted but 

they did not find any difference in cortisol levels between perch exposed to ALAN and 

control individuals. Crayfish are known to produce melatonin, serotonin and crustacean 

hyperglycemic hormone (CHH), all of which are likely influenced by circadian rhythms 

(Fanjul-Moles 2006). Changes in photoperiod or simply activity periods could impact 

hormone production. Even if individuals are not physically stressed, it appears that other 

aspects of physiology and behavior are changing in some taxa in response to ALAN. 

Visual acuity varies broadly within and among aquatic invertebrate taxa as well as 

developmental stages of crustaceans (Fanjul-Moles et al. 1992). Long-wavelength red light is 

absorbed 100 times more rapidly than blue light in water. Water also scatters short-
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wavelength blue light to a greater extent, meaning that if intensities were equal at the surface, 

red and blue light penetration is not equal at the level of the substrate. Light penetration to 

the benthos is greater in low-order streams. Orconectes cristavarius typically inhabits fourth 

order systems with more open canopies whereas C. chasmodactylus is more abundant in third 

order streams with more forested riparian zones (Fortino and Creed 2007). Perhaps large 

fourth order streams have exposed O. cristavarius to less riparian cover over millennia due to 

open canopies over wide bodies of water. This would expose communities to the full 

fluctuations of lunar cycles, providing a greater range of light intensities than would be found 

under a dense canopy in a headwater stream. 

Regional characteristics including landscape slope and aspect may influence the 

severity of ALAN impacts on stream systems. The southern Appalachian region is 

characterized by high elevation gradients and a high concentration of headwaters. Due to the 

rugged terrain, highways, communities and agricultural activities are typically most abundant 

in the valleys adjacent to the streams. Urban and street lighting as well as automobile 

headlights are common in some Appalachian stream valleys. Considering the enhanced 

presence of ALAN in southern Appalachian streams, it is possible that behaviors of stream 

macroinvertebrates are more likely to be influenced than macroinvertebrates in other rural 

regions of the southeastern US.  

It is not clear if individual responses may change due to repeated exposure to artificial 

light. It is unknown what the latency to respond is once ALAN is applied both suddenly and 

with a phase transition. Illumination thresholds are understudied in most freshwater 

invertebrates. While this study had small samples of males, females and reproductive forms, 

possible life-history specific differences in response should be explored further.  
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It is conceivable that disrupted nocturnal activity patterns may translate to altered 

diurnal activities in crayfish. Reduced nocturnal feeding could cause compensatory daytime 

activities, making individuals more vulnerable to visual-predators. When crayfish do not 

voluntarily expose themselves in search of habitat, feeding opportunities, burrowing or 

intraspecific interaction, a substantial food resource is eliminated for predators of crayfish 

such as rock bass (Fortino and Creed 2007). In contrast, illuminated environments may 

reduce searches for ideal habitat, leading to crayfish settling in sub-prime habitats where they 

face more competition and are more vulnerable to predators. Community-level field research 

is needed that incorporates ALAN and crayfish, along the lines of Meyer and Sullivan 

(2013). By reducing mobility, ALAN may reduce bioturbation and alter diet. Conducting 

field experiments similar to Creed and Reed (2004) and Helms and Creed (2005) with the 

addition of ALAN would provide an excellent starting point. 

 Efforts have been made to determine if customized spectral emissions possess the 

ability to minimize effects of ALAN on biota (Spoelstra et al. 2015). With each species likely 

responding uniquely to short- and long-wavelength light, challenges lie ahead in determining 

which technologies have the least impact. It is clear that the most effective means of reducing 

ALAN effects on stream ecosystems is to reduce light intensity altogether. The ecological 

functions of vegetative riparian buffers are crucial to the health of all freshwaters (Xiang et 

al. 2016). Riparian buffers are going to be of even greater importance in the future as ALAN 

spreads in developing countries. 

 Seasonal differences in riparian canopy and vegetation are likely to alter the ALAN 

intensities in freshwaters (Longcore and Rich 2004). Crayfish activity is decreased during the 

cooler water temperatures of winter (Fortino 2006), complicating our understanding of how 
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seasonality may affect crayfish in temperate zones. It is also possible that seasonal changes in 

nocturnal light emissions occur in mid- to high latitudes (Gaston et al. 2012). During winter, 

benthic light intensities may increase dramatically in light-polluted areas due to a loss of 

canopy and changes in ALAN emissions. Further field data collection is needed to 

understand the extent of seasonal changes in light exposure on stream communities.  

 Light pollution is becoming a ubiquitous feature of nocturnal landscapes (Cinzano et 

al. 2001, Gaston et al. 2014). Considering the multitude of species that are crepuscular or 

nocturnal (Hölker et al. 2010), my study acknowledges the importance of addressing species-

specific ecology, life history and visual aspects of physiology that translate to behavioral 

activity patterns in both dark and artificially illuminated environments. Experimental light 

treatments used field-calibrated ecologically relevant light levels. This translates to more 

relevant research results that are useful for urban planners considering the ecosystem impacts 

of artificial illumination. If nocturnal behaviors are altered, the effects of ALAN could be 

more far-reaching than currently known. Reduced mobility may have adverse effects on 

feeding, mating, habitat selection and predator-prey interactions. In a controlled microcosm, 

my data indicate that light-naïve Appalachian crayfish display reduced locomotor activities 

and increased sheltering under cool and warm color temperature LED light at night. The 

implications of these conclusions warrant greater efforts to protect freshwaters from 

ecological light pollution. 
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Table 1. Cambarus chasmodactylus total carapace length (TCL = cm), sex, male form and collection location. 

Trial 

MM/DD/YYYY Treatment Tank 

TCL 

(cm) Sex 

Form 

(males) 
Source Location 

4/22/2016 control left 3.2 female  Howards Creek, Watauga Co, NC 

4/22/2016 5000 K center 4.3 male I Howards Creek, Watauga Co, NC 

4/22/2016 3000 K right 3.5 female  Howards Creek, Watauga Co, NC 

4/23/2016 control center 3.4 male I Howards Creek, Watauga Co, NC 

4/23/2016 5000 K right 3.7 female  Howards Creek, Watauga Co, NC 

4/23/2016 3000 K left 3.0 female  Howards Creek, Watauga Co, NC 

4/24/2016 control right 3.4 female  Howards Creek, Watauga Co, NC 

4/24/2016 5000 K left 2.9 male II Howards Creek, Watauga Co, NC 

4/24/2016 3000 K center 3.2 female  Howards Creek, Watauga Co, NC 

4/29/2016 control left 3.7 male I Howards Creek, Watauga Co, NC 

4/29/2016 5000 K center 3.4 female  Howards Creek, Watauga Co, NC 

4/29/2016 3000 K right 4.4 male I Howards Creek, Watauga Co, NC 

4/30/2016 control center 4.0 male I Howards Creek, Watauga Co, NC 

4/30/2016 5000 K right 3.8 female  Howards Creek, Watauga Co, NC 

4/30/2016 3000 K left 3.5 female  Howards Creek, Watauga Co, NC 

5/1/2016 control right 4.2 male I Howards Creek, Watauga Co, NC 

5/1/2016 5000 K left 3.5 female  Howards Creek, Watauga Co, NC 

5/1/2016 3000 K center 3.7 female  Howards Creek, Watauga Co, NC 

5/21/2016 control left 3.6 female  Howards Creek, Watauga Co, NC 

5/21/2016 5000 K center 4.2 male II Howards Creek, Watauga Co, NC 

5/21/2016 3000 K right 3.2 male II Howards Creek, Watauga Co, NC 

5/22/2016 control center 3.5 female  Howards Creek, Watauga Co, NC 

5/22/2016 5000 K right 3.7 male II Howards Creek, Watauga Co, NC 

5/22/2016 3000 K left 3.7 female  Howards Creek, Watauga Co, NC 
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Table 1 continued. 

 

Trial 

MM/DD/YYYY Treatment Tank 

TCL 

(cm) Sex 

Form 

(males) 
Source Location 

5/23/2016    control right 4.1 male II Howards Creek, Watauga Co, NC 

5/23/2016 5000 K left 3.6 female  Howards Creek, Watauga Co, NC 

6/4/2016 3000 K right 3.3 male II Three Top Creek, Ashe Co, NC 

6/5/2016 control center 3.2 female  Three Top Creek, Ashe Co, NC 

6/5/2016 5000 K right 3.7 male II Three Top Creek, Ashe Co, NC 

6/5/2016 3000 K left 4.1 female  Three Top Creek, Ashe Co, NC 

6/19/2016 control left 3.7 female  Three Top Creek, Ashe Co, NC 

6/19/2016 5000 K center 3.3 female  Three Top Creek, Ashe Co, NC 

6/19/2016 3000 K right 3.9 female  Three Top Creek, Ashe Co, NC 

6/20/2016 control center 4.0 female  Three Top Creek, Ashe Co, NC 

6/20/2016 5000 K right 3.5 female  Three Top Creek, Ashe Co, NC 

6/20/2016 3000 K left 4.2 female   Three Top Creek, Ashe Co, NC 
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Table 2. Orconectes cristavarius total carapace length (TCL = cm), sex, male form and collection location. 

Trial 

MM/DD/YYYY 
Treatment Tank 

TCL 

(cm) 
Sex 

Form 

(males) 
Source Location 

5/7/2016 control left 1.9 male II S Fork New River, Watauga Co, NC 

5/7/2016 5000 K center 1.9 male II S Fork New River, Watauga Co, NC 

5/7/2016 3000 K right 2.3 male I S Fork New River, Watauga Co, NC 

5/9/2016 control center 2.1 male I S Fork New River, Watauga Co, NC 

5/9/2016 5000 K right 1.9 male I S Fork New River, Watauga Co, NC 

5/9/2016 3000 K left 1.7 male I S Fork New River, Watauga Co, NC 

5/10/2016 control right 1.9 male II S Fork New River, Watauga Co, NC 

5/10/2016 5000 K left 1.3 male II S Fork New River, Watauga Co, NC 

5/10/2016 3000 K center 1.5 male I S Fork New River, Watauga Co, NC 

5/16/2016 control right 1.9 male II S Fork New River, Watauga Co, NC 

5/16/2016 5000 K left 1.3 male II S Fork New River, Watauga Co, NC 

5/16/2016 3000 K center 1.5 male I S Fork New River, Watauga Co, NC 

5/28/2016 control left 1.7 female  S Fork New River, Watauga Co, NC 

5/28/2016 5000 K center 1.8 male II S Fork New River, Watauga Co, NC 

5/28/2016 3000 K right 1.6 male II S Fork New River, Watauga Co, NC 

5/29/2016 control center 1.7 male II S Fork New River, Watauga Co, NC 

5/29/2016 5000 K right 2.0 male II S Fork New River, Watauga Co, NC 

5/29/2016 3000 K left 1.9 male II S Fork New River, Watauga Co, NC 

5/30/2016 control right 1.9 male II S Fork New River, Watauga Co, NC 

5/30/2016 5000 K center 1.7 female  S Fork New River, Watauga Co, NC 

5/30/2016 3000 K left 1.5 male II S Fork New River, Watauga Co, NC 

6/12/2016 control left 1.9 male II S Fork New River, Watauga Co, NC 

6/12/2016 5000 K center 1.4 female  S Fork New River, Watauga Co, NC 

6/12/2016 3000 K right 1.7 female  S Fork New River, Watauga Co, NC 
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Table 2 continued  

       

Trial 

MM/DD/YYYY 
Treatment Tank 

TCL 

(cm) 
Sex 

Form 

(males) 
Source Location 

 

6/13/2016 3000 K left 1.8 male II 

 

S Fork New River, Watauga Co, NC 

6/13/2016 control center 1.5 male II S Fork New River, Watauga Co, NC 

6/13/2016 5000 K right 1.6 female  S Fork New River, Watauga Co, NC 

6/14/2016 3000 K left 2.1 female  S Fork New River, Watauga Co, NC 

6/26/2016 control left 1.9 female  S Fork New River, Watauga Co, NC 

6/26/2016 5000 K center 2.1 female  S Fork New River, Watauga Co, NC 

6/26/2016 3000 K right 1.4 male II S Fork New River, Watauga Co, NC 

6/27/2016 control center 1.9 female  S Fork New River, Watauga Co, NC 

6/27/2016 5000 K right 1.7 female  S Fork New River, Watauga Co, NC 

6/27/2016 3000 K left 2.0 male II S Fork New River, Watauga Co, NC 

6/28/2016 control right 1.7 female  S Fork New River, Watauga Co, NC 

6/28/2016 5000 K left 1.5 female  S Fork New River, Watauga Co, NC 

6/28/2016 3000 K center 2.0 female   S Fork New River, Watauga Co, NC 
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Table 3. Kruskal-Wallis ANOVA. Results of Kruskal-Wallis one-way analysis of variance 

on ranks to compare total seconds and frequencies of sheltering (SH) activities under the dark 

control, 5000 K cool LED light and 3000 K warm LED light. P values followed by an 

asterisk were determined to be significant using a sequential Bonferroni analysis (initial α = 

0.025). 

Species Hour Behavior H d.f. P 

C. chasmodactylus 2000 Total SH 7.63 2   0.02* 

C. chasmodactylus 2200 Total SH 4.70 2 0.10 

O. cristavarius 2000 Total SH 14.96 2 <0.001* 

O. cristavarius 2200 Total SH 6.67 2   0.04* 

C. chasmodactylus 2000 Frequency SH 10.38 2   0.01* 

C. chasmodactylus 2200 Frequency SH 5.01 2 0.08 

O. cristavarius 2000 Frequency SH 6.31 2 0.04 

O. cristavarius 2200 Frequency SH 2.41 2 0.30 
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Figure 1. Laboratory aquarium setup. A powerhead is used to maintain flow, 

two bricks are laid side-by-side for shelter, and an exposed open area allows 

for movement. Tanks were covered with mesh wire to prevent escape. 

Benthos consisted of uniform gravel at a depth of 5 cm. 1 cm2 grids were 

placed on the front and rear. 
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Figure 2. Examples of video recordings of crayfish behavior. Top left is a dark 

control illuminated by infrared, with a crayfish exposed mobile; top right is 15 

lux cool LED light, with a crayfish sheltering; bottom is 15 lux warm LED 

with a crayfish sheltering behind the bricks. 
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Figure 3. An example of a 1 cm2 grid at dawn following a trial night.  
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Figure 4. Boxplots of Cambarus chasmodactylus behaviors from 2000-2100 hrs. 

Total sheltering (A), and frequency of sheltering events (B). Medians with the 

same letter are not significantly different.  
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Figure 5. Boxplots of Cambarus chasmodactylus behaviors from 2200-

2300 hrs. Total sheltering (A), and frequency of sheltering events (B). 

Medians with the same letter are not significantly different. 
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Figure 6. Boxplots of Orconectes cristavarius behaviors from 2000-2100 hrs. 

Total sheltering (A), and frequency of sheltering events (B). Medians with the 

same letter are not significantly different. 
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Figure 7. Boxplots of Orconectes cristavarius behaviors from 2200-2300 

hrs. Total sheltering (A), and frequency of sheltering events (B). Medians 

with the same letter are not significantly different. 
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